

Welcome to the EcoFlow Design Document!

System Overview

The EcoFlow smart HVAC system is designed to provide seamless control from our software,
through our microcontrollers and finally outputted through HVAC hardware to our users. The
system is broken down into two main components: Raspberry Pi and Arduino. Information
regarding calibrating temperature and thermal image data are provided to the Raspberry Pi from
sensors and a thermal imaging camera. Image processing takes place at a server, and is
brought back to the Raspberry pi. With this data, the Raspberry Pi will send commands to the
Arduino, and the Arduino will adjust servos that are attached to HVAC hardware accordingly.

Objective

To provide a smart, ecological solution for thermal comfort with reduced energy expenditure,
providing an alternative to conventional HVAC units.

System Architecture

System Hardware:

Conventional HVAC parts:

● Honeywell AC Unit
● Wyes (6” to 4” and 4” to 3”)
● HVAC Tubing (6” from AC source and 3” for output)
● Damper (3”)

Computers, Microcontrollers and Associated pieces:

● Arduino UNO R3
● Raspberry Pi 3
● Servo Motors (Futaba S3003)
● Thermal Sensors (DS18B20)
● Flir Lepton
● Server

Build

● Desk
● Chair

https://www.amazon.com/dp/B01COQZQOM/ref=cm_sw_r_cp_ep_dp_-D83zbX33FDWY
https://www.amazon.com/dp/B00IIFW2L4/ref=cm_sw_r_cp_ep_dp_saT3zbBE4BPPW

System Software

● Arduino
○ Arduino IDE

● Raspberry Pi
○ BCM2835
○ Opencv 3.3.1
○ LePi

● Server
○ OpenCV 3.3.1
○ Python3

■ numpy >= 1.13.3

Component Design

● Flir Lepton:
○ It receives a thermal image of 120x160 frame.

● Server
○ This server analyzes the thermal image with OpenCV and returns the analysis.

● Thermal Sensors
○ These will serve to calibrate the Flir Lepton, attached to the Raspberry Pi. This

will ensure that the Flir Lepton will associate thermal images produced with the
room temperature around the user.

https://opencv.org/releases.html
https://github.com/cosmac/LePi
https://opencv.org/releases.html

● Raspberry Pi
○ Gathers data provided from Flir Lepton, Thermal Sensors and Server and

generates 2 byte commands to send to the Arduino via serial.
● Arduino

○ Receives commands from the Raspberry Pi and makes adjustments to servos
connected to respective dampers. The first byte corresponds to the angle in
which the servo should adjust, while the second refers to which servo(s) should
adjust their angle.

● Servo
○ Adjusts to the correct angle based on the command sent to the Arduino. This is

connected to an HVAC Damper. Based on the angle of the damper, the user will
receive more heat or cooled air, as well as have adjusted angles to tend to the
user’s position.

Human Interface Design

● The user will input their preferred temperature into a system-controlled laptop. The
system will generate the appropriate response by providing more heat or cooled air to
the user. The system will continue to check the room temperature and position of the
user and automatically adjust accordingly.

Parts List

Product Number
Requested

Price Website

Breadboard 1 $5.95 https://www.sparkfun.com/products/12615

Temperature
Sensor

3 $11.85 https://www.sparkfun.com/products/245

Arduino R3 1 $24.95 https://www.sparkfun.com/products/11021

Male - Male
Jumper Wires

1 $7.42 http://a.co/8O5O8BY

Rasberry Pi 3 1 $39.95 https://www.sparkfun.com/products/13825

Flir Lepton 1 $199.00 https://www.digikey.com/short/q77cjf

Breakout
Board

1 $39.99 https://www.digikey.com/short/q77cj9

SD Card 1 $13.99 http://a.co/4sMN6Of

Power Supply 1 $9.99 http://a.co/59bIni4

https://www.sparkfun.com/products/12615
https://www.sparkfun.com/products/245
https://www.sparkfun.com/products/11021
http://a.co/8O5O8BY
https://www.sparkfun.com/products/13825
https://www.digikey.com/short/q77cjf
https://www.digikey.com/short/q77cj9
http://a.co/4sMN6Of
http://a.co/59bIni4

Female-Fema
le Jumper
Wires

1 $4.99 http://a.co/8WegICA

Male -
Female
Jumper Wires

1 $4.99 http://a.co/iWN4zJB

Pi Cobbler 1 $7.95 https://www.adafruit.com/product/2028

Trade Size 3
Female x
Male
Aluminum
Airflow
Damper for
Standard
Duct

8 $321.76 https://www.mcmaster.com/#1773k41/=19
p25vz

6” duct hose 4 x 5ft $188.20 https://www.mcmaster.com/#5488K66

"3"" duct
hose"

8 x 6ft $226.56 https://www.mcmaster.com/#5488K61

6-4-4 Wye
Reducer

2 $57.94 https://www.mcmaster.com/#1766K868

4-3-3 Wye
Reducer

4 $49.24 https://www.mcmaster.com/#1766K861

"2 13/16"" to
3 3/4""
Clamps"

6 packs of 5 $51.30 https://www.mcmaster.com/#54155k25/=1
9rt8fv

"3 5/8"" to 6
1/2 Clamps"

2 packs of 5 $18.62 https://www.mcmaster.com/#5416K37

Servos with
feedback

8 $98.96 http://a.co/0aOcfk0

Adafruit
16-Channel
12-bit
PWM/Servo
Shield - I2C
interface

1 $17.50 https://www.adafruit.com/product/1411

http://a.co/8WegICA
http://a.co/iWN4zJB
https://www.adafruit.com/product/2028
https://www.mcmaster.com/#1773k41/=19p25vz
https://www.mcmaster.com/#1773k41/=19p25vz
https://www.mcmaster.com/#5488K66
https://www.mcmaster.com/#5488K61
https://www.mcmaster.com/#1766K868
https://www.mcmaster.com/#1766K861
https://www.mcmaster.com/#54155k25/=19rt8fv
https://www.mcmaster.com/#54155k25/=19rt8fv
https://www.mcmaster.com/#5416K37
http://a.co/0aOcfk0
https://www.adafruit.com/product/1411

Shield
stacking
headers for
Arduino (R3
Compatible)

6 $11.70 https://www.adafruit.com/product/85

3x4 Right
Angle Male
Header - 4
pack

6 $17.70 https://www.adafruit.com/product/816

10pcs Male &
10pcs Female
DC Power
Jack Adapter
Connector
Plug

1 $2.00 https://www.adafruit.com/product/368

5V 10A
Switching
Power Supply

1 $25.00 https://www.adafruit.com/product/658

Thermal
Curtains

1 $39.98 http://a.co/fOdsEx6

Curtain Rod 1 $49.95 http://a.co/fOdsEx6

AmazonBasic
s Chair

1 $64.99 http://a.co/5rlLSMG

Desk 1 $249.99 http://a.co/3pvg4xp

Pololu
Universal
Aluminum
Mounting Hub
for 3mm
Shaft, #2-56
Holes
(2-Pack)

6 $35.70 https://www.pololu.com/product/1079/pict
ures

Gorilla
4200101-2
Epoxy (2
Pack) .85 oz,
Clear

1 $11.15 http://a.co/ax55PS8

https://www.adafruit.com/product/85
https://www.adafruit.com/product/816
https://www.adafruit.com/product/368
https://www.adafruit.com/product/658
http://a.co/fOdsEx6
http://a.co/fOdsEx6
http://a.co/5rlLSMG
http://a.co/3pvg4xp
https://www.pololu.com/product/1079/pictures
https://www.pololu.com/product/1079/pictures
http://a.co/ax55PS8

Machine
Screw: #2-56,
7/16″ Length
Phillips
(25-pack)

2 $1.98 https://www.pololu.com/product/1957

Machine Hex
Nut: #2-56
(25-pack)

2 $1.98 https://www.pololu.com/product/1067

Setting up an Arduino

This page will describe how to connect your computer to an Arduino UNO R3 Microcontroller.

Hardware Requirements

● An Arduino R3 Microcontroller
● USB Cable - Standard A to B
● Windows/Mac/Linux Machine

Software Requirements

● Arduino IDE

Connecting the Arduino

Connect the Arduino via the USB cable to the computer.

Initialize the Arduino

● Open the Arduino IDE Software
● Ensure that the Arduino is connected to the computer
● Go to the Tools Tab and select Board -> Arduino/Genuino Uno
● Go to the Tools Tab and select Port -> Associated Port with Arduino connected
● Your Arduino should be ready to receive code uploaded from the user.

https://www.pololu.com/product/1957
https://www.pololu.com/product/1067

HVAC System

Overview

This component is meant to output commands sent over by the Thermal Imaging
Pipeline using the PID algorithm, as well as generate responses to the Raspberry Pi
over serial. This document will discuss how we execute commands received and sent,
as well as regulate desired temperature in the HVAC system.

Figure: HVAC System Diagram

Communication

Arduino Serial Protocol

This message is a 2 byte response to the command sent from the Raspberry Pi
in hexadecimal form:

+----------------+
|Boolean Response| 1 Byte
+----------------+
| Error Code | 1 Byte
+----------------+

How Communication Works

The first byte will refer to a boolean value- whether or not the command could be
executed:

x00: No Error - Successful angle command.
x01: Angle Error - Command Failed.
x02: Large Angle Error - Angle requested is too large.

The second byte would refer to an error code, if any:

x00: No Error - Successful servo command.
x01: Servo Error - Command Failed.
x02: Servo Error - Servo Address not found.

Serial Response Protocol

This message is a 2 byte command sent from the Arduino to servo motors, in
hexadecimal form:

+----------------+
|Angular Command | 1 Byte
+----------------+
| Servo Address | 1 Byte
+----------------+

How Communication Works

The first byte will refer to the angular position in which the Servos must be in:

x00...xB3: 0-179 Degrees

The second byte refers to the associated Servos that must turn:

x00: Servo 1
x01: Servo 2
x02: Servo 3
x03: Servo 4
x04: Servo 5
x05: Servo 6
x06: Servo 7
x07: Servo 8

Temperature Regulation

● We make use of Proportional-Integral-Derivative Controllers (PID controllers) to maintain
the temperature requested by the user for the HVAC system.

LePi Helper

recvall(s=Socket, n=Number of bytes)

Receives a response from the socket of length n.

● Returns:
○ The response in a byte array
○ None if the message is not of length n

Usage:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))
Message(s).send_frame_request()

frame = recvall(s, 38410)

create_socket(ip_address=IP Address String)

Creates a socket to the IP address on port 5995 with a timeout of 10 seconds.

● Exceptions:
○ timeout: This occurs when the client connection to the server times out.

● Returns:
○ Socket

Usage:

s = create_socket("IP ADDRESS")

LePi Image

normalize_frame(frame=Byte array of length 38400)

Does a local normalization and converts the frames to a 0-255 scale.

● Returns:
○ 2D numpy array of length 120 and width 160.

Usage

Connect to the Raspberry Pi Application
s = create_socket("Raspberry Pi IP Address")

Request a frame
Message(s).send_frame_request()
frame = Message(s).receive_response()

Receive the response
msg = Message()
msg.open_response(frame)

Normalize the image data
norm_frame = normalize_frame(msg.data)

LePi Server

Objects

These objects are meant to make reading data from our stream socket easier to read.

+----------------+ <--------+
| Message Type | 1 Byte |
+----------------+ |
| Lepton Command | 1 Byte |
+----------------+ |
| | | +--------+
| Outside Temp | 4 Bytes |---------| Header |
| | | +--------+
+----------------+ |
Sensor Temp	4 Bytes
+----------------+ <--------+	
Image Frame	38400 Bytes
(160 x 120)	
+----------------+

class ServerResponse

ServerResponse is the response given by the server when issuing a command.

Name Value

FRAME_READY 0

NO_FRAME 1

I2C_SUCCEED 2

I2C_FAILED 3

RESEND 4

Example

Client Request Above

resp = helper.recvall(self.socket, 38410)

if(resp[0] == ClientRequestType.I2C_CMD):
 print("I2C CMD")
if(resp[1] == ServerResponse.I2C_SUCCEED):
 print("I2C Succeeded")

Assuming an I2C command was sent we receive the data from the socket.

resp = helper.recvall(self.socket, 38410)

Then we output the Message Type and Lepton Command When receiving a response from the
server, the Message Type is the same one sent by the client.

if(resp[0] == ClientRequestType.I2C_CMD):
 print("I2C CMD")

Then the Lepton Command is replaced by server response. In this case I2C commands, can
have 3 responses. I2C_SUCCEED, I2C_FAILED, and RESEND

if(resp[1] == ServerResponse.I2C_SUCCEED):
 print("I2C Succeeded")

class ClientRequestType

This is the type of command you will send. If you want a frame request, you only
need to set the Message Type. If you want to send an I2C command, you need to set
both the message type and I2C command you want to send.

Name Value

FRAME_REQUEST 0

I2C_CMD 1

UNKNOWN_MSG 2

Example

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))

frame_request = bytearray()
frame_request.append(ClientRequestType.FRAME_REQUEST)

s.send(frame_request)

When asking for a frame request, you only need to send the first byte. The server only looks at
the first byte.

frame_request = bytearray()
frame_request.append(ClientRequestType.FRAME_REQUEST)

class I2CCommand

This is the I2C Command you will send to the server.

Name Value

RESET 0

REBOOT 1

FCC 2

SENSOR_TEMP_K 3

SHUTTER_OPEN 4

SHUTTER_CLOSE 5

VOID 6

Usage:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))

i2c_request = bytearray()
i2c.append(ClientRequestType.I2C_CMD)
i2c.append(I2CCommand.FCC)

s.send(frame_request)

When requesting an I2C command, you must set the header and the Lepton Command.

i2c_request = bytearray()
i2c.append(ClientRequestType.I2C_CMD)
i2c.append(I2CCommand.FCC)

class Message

This class allows you to easily send and receive messages from the Raspberry
Pi to the server.

init(self, s=None)

Creates a message with a socket. Default is no socket.

Usage:

With a socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))
msg = Message(s)

Without a socket

msg = Message()

open_response(self, frame_resp)

This opens a frame and sets the object attributes. Modifies the enclosed object.

● Exceptions:
○ ValueError: When the frame_resp is invalid.

● Returns:
○ Nothing

Usage:

Take in the input the 38410 bytes response.

msg = Message()
msg.open_response(response)

property msg(self)

Creates a message from all the values in the class and returns an array of bytes.

● Exceptions:
○ AttributeError: This exception is called when the Object attributes are invalid.

● Returns:

○ An array of bytes of length 38140 in the format of the Lepton Protocol.

property frame_request(self)

Prepares a frame request message for the Lepton

Usage:

Prepare a frame request message. If you sending a frame request, use the
function send_frame_request()

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))

msg = Message()
s.send(msg.frame_request)

is_frame_ready(self)

Checks the header of a message and returns if the frame is ready.

● Returns:
○ True if it is ready
○ False if it is not

Usage:

if msg.is_frame_ready():
 print("It is ready")

send_fcc(self)

Sends a FCC request to the server application.

● Returns:
○ True if the FCC request was successful
○ False if the FCC request was not successful

Usage:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))

Message(s).send_fcc()

send_frame_request(self)

Sends a FCC request to the server application.

● Returns:
○ True if the frame request is successful
○ False if the frame request is not successfulUsage:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))
Message(s).send_frame_request()

receive_response(self)

Receives a response from the server. Utilizes the recvall function and receives all 38410 bytes.

● Returns:
○ The response in a byte array
○ None if the message is not of length 38410

Usage:

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect("IP ADDRESS", 5995))
Message(s).send_frame_request()

frame = Message(s).receive_response()
msg = Message()
msg.open_response(frame)

RaspberryPi 3 Lepton Wiring

Requirements

1. Flir Lepton 3
2. Breakout Board

https://www.digikey.com/short/q77cjf
https://www.digikey.com/short/q77cj9

Pin Configuration

● SCL: Pin#5
● SDA: Pin#3
● VIN: Pin#1
● GND: Pin#25
● CLK: Pin#23
● MISO: Pin#21
● MOSI: Pin#19
● CS: Pin#24

Example

macOS

Overview

This page will describe how to connect your MacBook Pro 2016+ to the
Raspberry Pi 3.

Hardware Requirements

MacBook Dongles

1. Belkin USB-C to Gigabit Ethernet Adapter

or

1. Thunderbolt to Gigabit Ethernet Adapter
2. Thunderbolt 3 (USB-C) to Thunderbolt 2 Adapter

Raspberry Pi 3

1. Micro usb cable for power.
2. SD Card

Creating the operating system

1. Copy of Raspbian
2. Flash the SD Card using Etcher.io.

Connecting to the Pi

Default Username and Password

ssh pi@raspberrypi.local
password: raspberry

Servo Wiring Guide

● Arduino UNO R3
● Servo Shield - I2C Interface
● Servomotors (8)

https://www.apple.com/shop/product/HJKF2ZM/A/belkin-usb-c-to-gigabit-ethernet-adapter?fnode=5c8a5228048bd3664ec18d017058aedad6f74dea7c4377e721ba613f559e4029f0910636b8140736ca00df1d6e1a5a90bf9322324411e863c1eadb6ebf2c045346e0337b7f97d338e292807dbbe518fd600ddddecf14c8239de223dcd9873263918689297e1ba419c03225850183a52f
https://www.apple.com/shop/product/MD463LL/A/thunderbolt-to-gigabit-ethernet-adapter?afid=p238%7CsFv1jRjeX-dc_mtid_1870765e38482_pcrid_52243316890_&cid=aos-us-kwgo-pla-btb--slid--product-MD463LL/A
https://www.apple.com/shop/product/MMEL2AM/A/thunderbolt-3-usb-c-to-thunderbolt-2-adapter
http://a.co/4sMN6Of
https://www.raspberrypi.org/downloads/raspbian/
https://etcher.io/

Pin Configuration

Each channel corresponds to a servo motor. Connect the servo motor, ensuring the PWM, V+,
and GND pins are connected correctly.

Example

Thermal Imaging and HVAC System Integration

The members will be combining the tasks allocated to them to produce a system that receives
data from components attached to the Raspberry Pi and sends them to the Arduino. The
Arduino should accept these commands, execute commands to the associated servo motors
and successfully respond to the Raspberry Pi with a message from HVAC system in real-time.

Raspberry Pi to Arduino Communication

● The Raspberry Pi will serve as a wrapper to integrate the Thermal Imaging Pipeline and
HVAC System.

○ The Raspberry Pi must establish a secure serial connection to the Arduino and
have the ability to send and receive messages to and from the Arduino.

HVAC Build

● The members will also ensure that the build for the HVAC unit and environment is
operable/functional.

○ A robust build of HVAC parts must be made to adjust according to commands
from the Arduino.

○ Airflow must be maintained from the source to the output tubes.
○ A secure connection between servo motors and dampers must be set to ensure

smooth rotation.
Before beginning visit the Lepton 3 Wiring Guide to make sure the Flir Lepton is properly
connected.

Thermal Imaging Pipeline

This component is meant to extract the temperature and location of the user and output that as
data for the HVAC Systems' PID algorithm. This document will discuss how we extract and
process Lepton Images through an external machine.

https://github.com/gw-cs-sd/sd-18-eco-furniture/wiki/Lepton-3-Wiring-Guide

Figure: Thermal Imaging Camera Diagram

Communication

Lepton Protocol

+----------------+ <--------+
| Message Type | 1 Byte |
+----------------+ |
| Lepton Command | 1 Byte |
+----------------+ |
| | | +--------+
| Outside Temp | 4 Bytes |---------| Header |
| | | +--------+
+----------------+ |
Sensor Temp	4 Bytes
+----------------+ <--------+	
Image Frame	38400 Bytes
(160 x 120)	
+----------------+

How communication works

When an I2C command is to the StreamerServer, it reads the first byte determines it's a I2C
command then executes the I2C command set in the second byte. The server then sends a
response with first byte set to I2C command and the second byte header set to I2C_SUCCEED.

Example of a I2C command being received by the server.

[0]SERVER -- RECV -- Number of bytes read: 2
[0]SERVER -- RECV -- Message: I2C_CMD
[0]SERVER -- SEND -- Sending message response... Message sent!

When an FRAME_REQUEST is sent to the StreamerServer, it reads the first byte determines
it's a frame request. The server then sends a response with first byte set to FRAME_REQUEST,
the second byte header set to FRAME_READY or NO_FRAME. Finally the image frame is also
filled with the values from the Flir Lepton.

Example of a frame request being received by the server.

[1]SERVER -- RECV -- Number of bytes read: 1
[1]SERVER -- RECV -- Message: FRAME_REQUEST
[1]SERVER -- SEND -- Sending message response... Message sent!

Applications running

There are 2 programs that need to be run.

1. StreamerServer.cpp
2. Streamer.py

StreamerServer.cpp

This server initiates I2C commands and collects the frames from the Lepton and sends it to the
client. This application was created by Andrei Cosma. Run the the application on the Raspberry
Pi 3.

streamer.py

This application connects to the streamer server through sockets, sends a FCC command, then
collects frames and analyzes them utilizing opencv. This application was created by Jeff
Schulthies. Run the the application on the server. This application uses the Python 3 LePi
module located in ./sd-18-eco-furniture/raspberry-pi/modules/LePi/.

Getting Started

Configuration

Line 43 StreamerServer.cpp. Replace this ip address with the IP address of your Raspberry Pi

string ip_address = "169.254.244.43"; // New ip address

Line 14 Streamer.py Replace this ip address with the IP address of your Raspberry Pi

s = create_socket("169.254.44.12")

Usage

1. Start Streamer Server
2. Start streamer.py

https://bitbucket.org/gwu_sd_team/sample_apps/src/7742d98e6ac1543d9acbc27c1d764293f1b14f1e/IR_streamer/IR_raspberry_server/app/Server/StreamerServer.cpp?at=master&fileviewer=file-view-default
https://github.com/gw-cs-sd/sd-18-eco-furniture/blob/jschulthies-dev/raspberry-pi/streamer.py

Example output

References

Flir Lepton
● Datasheet

Temperature Sensor
● Datasheet

http://www.flir.com/uploadedFiles/OEM/Products/LWIR-Cameras/Lepton/Lepton-3-Engineering-Datasheet.pdf
https://datasheets.maximintegrated.com/en/ds/DS18B20.pdf

